材料后,他们又发现了一种具有直流反重力特性的材料。
FCW041,41号材料!
会议室里。
刘云利正做着报告,“41号材料,在206K附近,检测到6.19的反重力场强度,超导状态则为6.23,确定直流反重力指标0.9381/0.9377。”
“FCW041,铁氢氧铁硒化合物,临界温度为164K,交流超导反重力指标0.973。”
“区域覆盖面积为……”
“从数据上来看,直流反重力特性明显高于交流超导反重力,表现出了反重力偶发性态。”
“和FCW025对比来看,FCW041的化合物更复杂,元素含量更多,半拓扑结构也更加复杂……”
他说着看向了王浩,才继续道,“之前王院士提到了一阶铁共价键问题,FCW041的共价键确实要比FCW025多一个。”
“我们认为,可能存在关联。”
当刘云利做完了报告以后,会议室里的多数人还是比较淡定的,因为有了FCW025的发现,再发现FCW041似乎也不算什么。
但另一部分人就非常激动了。
比如,向乾生。
作为湮灭力场实验组的核心人员之一,向乾生可是知道‘颗粒性超导材料’的研究。
上一次颗粒性材料实验中,以厘米级的颗粒性材料,就让支持制造的反重力场强度从7提升到了10.3。
如果是毫米级呢?
以FCW041制造的直流反重力场强度来看,再制造出毫米级的颗粒性材料,肯定有希望让场力强度提升到超过15。
这个数值就可以支持用FCW041顶替高压混合材料,实现以金属材料为基础的F射线发生技术。
王浩也非常激动和兴奋。
他本来觉得能有两种材料具有反重力特性就很不错了,没想到能检测出如此高强度的场力。
这个数据已经达到了研究目标。
“看来,毫米级颗粒性材料要提上日程了。”
“就找杨云和院士,让东工精密制造毫米级的FCW041,再来进行实验……”
王浩思考着站起来,满脸笑容的总结道,“这是值得庆祝的时刻,我们的研究大获成功!”
“FCW041,就是我们要寻找的材料!”
所有人都鼓起了掌。
王浩继续交代道,“这些天,大家都辛苦了,新的研究计划最少要一个月进行。”
“大家可以暂时轻松下来了。”
等王浩说完了以后,好多人都有些不明所以。
比如,廖建国。
他不知道颗粒性材料的研究,不明白为什么研究就结束了,他就和汤建军一起找到向乾生问了问。
向乾生道,“7,就是目标。”
“为什么?新的F射线技术,最低要求场力强度达到15吧?”廖建国疑惑道,“7,也能制造出F射线,但强度肯定低很多。”
汤建军则持有另一种看法,“F射线强度低,但也没关系,7外加螺旋力场挤压,也足够作为核聚变的容器了吧?”
“这个……我不清楚。”
向乾生摇头道,“我们有另一项和材料有关的研究,可以有效提升同样材料制造的反重力场强度。”
“7,已经达标了。”
“只要使用了另外一项技术,制造的场力强度就会有很大提升,具体多少还是要实验来看……”
廖建国和汤建军对视一眼,全都看到了对方眼中的惊讶。
同样材料,提升反重力场强度?
还有这种技术?
廖建国更对于技术本身感兴趣,但可能因为保密问题,向乾生明显不愿